Sunday, January 4, 2009

Overview
A complete pattern recognition system consists of a sensor that gathers the observations to be classified or described, a feature extraction mechanism that computes numeric or symbolic information from the observations, and a classification or description scheme that does the actual job of classifying or describing observations, relying on the extracted features.
The classification or description scheme is usually based on the availability of a set of patterns that have already been classified or described. This set of patterns is termed the training set, and the resulting learning strategy is characterized as supervised learning. Learning can also be unsupervised, in the sense that the system is not given an a priori labeling of patterns, instead it itself establishes the classes based on the statistical regularities of the patterns.
The classification or description scheme usually uses one of the following approaches: statistical (or decision theoretic) or syntactic (or structural). Statistical pattern recognition is based on statistical characterisations of patterns, assuming that the patterns are generated by a probabilistic system. Syntactical (or structural) pattern recognition is based on the structural interrelationships of features. A wide range of algorithms can be applied for pattern recognition, from very simple Bayesian classifiers to much more powerful neural networks.
An intriguing problem in pattern recognition is the relationship between the problem to be solved (data to be classified) and the performance of various pattern recognition algorithms (classifiers). Van der Walt and Barnard (see reference section) investigated very specific artificial data sets to determine conditions under which certain classifiers perform better and worse than others.
Pattern recognition is more complex when templates are used to generate variants. For example, in English, sentences often follow the "N-VP" (noun - verb phrase) pattern, but some knowledge of the English language is required to detect the pattern. Pattern recognition is studied in many fields, including psychology, ethology, cognitive science and computer science.
Holographic associative memory is another type of pattern matching scheme where a target small patterns can be searched from a large set of learned patterns based on cognitive meta-weight.
[edit] Uses


The face was automatically detected by special software.
Within medical science, pattern recognition is the basis for computer-aided diagnosis (CAD) systems. CAD describes a procedure that supports the doctor's interpretations and findings.
Typical applications are automatic speech recognition, classification of text into several categories (e.g. spam/non-spam email messages), the automatic recognition of handwritten postal codes on postal envelopes, or the automatic recognition of images of human faces. The last two examples form the subtopic image analysis of pattern recognition that deals with digital images as input to pattern recognition systems.

Algorithm


Example of k-NN classification. The test sample (green circle) should be classified either to the first class of blue squares or to the second class of red triangles. If k = 3 it is classified to the second class because there are 2 triangles and only 1 square inside the inner circle. If k = 5 it is classified to first class (3 squares vs. 2 triangles inside the outer circle).
The training examples are vectors in a multidimensional feature space. The space is partitioned into regions by locations and labels of the training samples. A point in the space is assigned to the class c if it is the most frequent class label among the k nearest training samples. Usually Euclidean distance is used.
The training phase of the algorithm consists only of storing the feature vectors and class labels of the training samples. In the actual classification phase, the test sample (whose class is not known) is represented as a vector in the feature space. Distances from the new vector to all stored vectors are computed and k closest samples are selected. There are a number of ways to classify the new vector to a particular class, one of the most used techniques is to predict the new vector to the most common class amongst the K nearest neighbors. A major drawback to using this technique to classify a new vector to a class is that the classes with the more frequent examples tend to dominate the prediction of the new vector, as they tend to come up in the K nearest neighbors when the neighbors are computed due to their large number. One of the ways to overcome this problem is to take into account the distance of each K nearest neighbors with the new vector that is to be classified and predict the class of the new vector based on these distances.
[edit] Parameter selection
The best choice of k depends upon the data; generally, larger values of k reduce the effect of noise on the classification, but make boundaries between classes less distinct. A good k can be selected by various heuristic techniques, for example, cross-validation. The special case where the class is predicted to be the class of the closest training sample (i.e. when k = 1) is called the nearest neighbor algorithm.
The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy or irrelevant features, or if the feature scales are not consistent with their importance. Much research effort has been put into selecting or scaling features to improve classification. A particularly popular approach is the use of evolutionary algorithms to optimize feature scaling[citation needed]. Another popular approach is to scale features by the mutual information of the training data with the training classes[citation needed].
[edit] Properties
The naive version of the algorithm is easy to implement by computing the distances from the test sample to all stored vectors, but it is computationally intensive, especially when the size of the training set grows. Many nearest neighbor search algorithms have been proposed over the years; these generally seek to reduce the number of distance evaluations actually performed. Some optimizations involve partitioning the feature space, and only computing distances within specific nearby volumes. Several different types of nearest neighbor finding algorithms include:
k-Most Similar Neighbor (k-MSN)
Linear scan
Kd-trees
Balltrees
Metric trees
Locality sensitive hashing (LSH)
Agglomerative-Nearest-Neighbor
Redundant Bit Vectors (RBV)
The nearest neighbor algorithm has some strong consistency results. As the amount of data approaches infinity, the algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate (the minimum achievable error rate given the distribution of the data). k-nearest neighbor is guaranteed to approach the Bayes error rate, for some value of k (where k increases as a function of the number of data points).
The k-NN algorithm can also be adapted for use in estimating continuous variables. One such implementation uses an inverse distance weighted average of the k-nearest multivariate neighbors. This algorithm functions as follows:
Compute Euclidean or Mahalanobis distance from target plot to those that were sampled.
Order samples taking for account calculated distances.
Choose heuristically optimal k nearest neighbor based on RMSE done by cross validation technique.
Calculate an inverse distance weighted average with the k-nearest multivariate neigh